
 The Ultimate Mac Cracking
 Guide

          DISCLAMER: I, ProZaq, take NO RESPONSIBILITY for any damage done to
your or anyone else’s computer as a result of following the instructions in
this file. I take further NO RESPONSIBILITY for anyone using this file for illegal
purposes. If YOU do anything illegal it’s YOUR SHIT! I intend this file for
educational purpouses only. I therefore strongly recomend you registering all
sharewares, to keep shareware developers alive, and so that we have a
chance against the hughe multi-million-dollar software developing
companies! If you decide to use the methods described here for illegal
things, don’t blame me if you get caught!

--==< Intro >==--

          This file is the first part for the complete guide to cracking programs for
the Mac. It is planned that when this file is complete it will give a full look at
all the ways of cracking programs that I can come up with. There are two
references that should be read before reading this article*: “List of
Commands” and “Beginner's Guide to Assembly”. The former contains a list
of the most common 68K Mac assembly commands and the later is a guide
to how assembly language works. Before you go on reading, read “Beginner's
Guide to Assembly”, as I asume that anyone reading this already knows
assembly! Also, some of you might find this file a bit lenghty and wordy. But
remember that I try to describe the methods of cracking thoroughly and in as
much detail as possible!

*Weasel's note: “Beginner's Guide to Assembly” was included in HackAddict 5. “List of
Commands” is located in “Appendix A: List of Commands” in this issue.

--==< Table of Contents >==--

I.              Software you will need
II.            How to Use Macsbug
III.          Exploiting Dialogs
IV.        Using A-traps With Dialogs
V.          How to Crack (in theory)
VI.        How to Crack (in real life)
VII.      End of Part 1

--==< Software you will need >==--

          So what will you need to be a cracker? Well you will need MacsBug, and
Super ResEdit (ResEdit with a code editor). MacsBug is a debugger. It was
created to allow programers to follow their code through and to find errors
and incompabilities. Super ResEdit differs from ResEdit in that it allows you
to view the “CODE” resource as assembly commands (instead of a bunch of
hex numbers). MacsBug is included with this archive. Look for Super ResEdit
at www.weasel.org (when it is up) or the HackAddict Hotline Site.

--==< How to Use Macsbug >==--

          You install MacsBug simply by throwing it into the system folder, and
restarting your machine. You activate it by pressing the “command” and
“power-key” (the one towards the top of your keyboard marked with the
head of an arrow pointing to the left) buttons. This should have “dropped”
you into MacsBug. You will notice that you are in MacBugs ‘cause your
desktop is replaced with a with a bunch of numbers on a white background.
Well, going from the top left side, under “SP” is the current position of the
stack pointer, underneath the position of the SP are the values contained in
the SP. Under those numbers is the name of the application that is currently
the foremost active. Under that is the status of the Status Register (he he),
followed by the info held in the 8 data registers, and the 8 address registers.
To the right of the address registers is a horizontal line going across the
screen. Under that are about 4 lines of text. The topmost line discribes where
in the
application’s code the processor was halted. Under that line are 3 other lines
with assembly commands. These are the three commands in line to be
executed. To the right of them (in the right bottom corner) are the
hexadecimal values of the assembly commands. If the topmost assembly
command is a conditional such as BEQ then “Will/ Will not branch” will
appear between the command and it’s hex value. Underneath the “Will/ Will
not branch” is a hex number. “Will branch” means that the given condition
was satisfied and that the program will branch to the address defined by the
number underneath the “Will/ Will not branch”. If it says “Will not branch”
then the number will appear underneath it too. This means that the program
will not branch, but continue on with the next command in line. But would it
have branched it would have branched to the memory address represented
by the hex number. This is a very important concept and it gets important
later on! Above this section is a large empty space. This gets filled up with
the results of the commands you give to MacsBug. Your commands get
written under the three assembly commands.   

          What happens when you drop into MacsBug is that your processor stops
executing commands, and you can go through a code step by step,
command by command, follwoing through exactly what the program does.
So how do you do it? Type “t” followed by a return.
This causes the processor to execute the next assembly command in line.
The assembly command that was executed appears now in the middle blank
section of your screen, and a new assembly command appears under the
two old ones.

--==< Basic MacsBug Commands >==--

      - t :      traces over the next command in line. If it is used on a JSR
command it jumps over the the subroutine. (It executes the whole
soubroutine, without allowing you to see what happened)

      - s :      does the same thing as “t” except it “steps into” a subroutine.    For
example if you are not interested in what happens in an subroutine you
should type “t”. This causes the processor to continue untill it reaches a RTS
command, and only then give the controll back to you. If you on the other
hand want to see what happens in that subroutine, you should type “s” to
step into it and follow through the code from there.

      - es :          this forces the current application to quit (not always).   

      - rs :          restarts your computer (sometimes it doesn work and you have
to do it the old fashioned way: apple-control-powerkey)

      - rb :          reboots your computer (boots up the different external devices
at startup). This is slower then the “rb” command

      - dm [address] :            displays what is in the memory at a given address.
For example the command “dm a6” shows you what is held in the address
pointed to by address register 6. If you type “dm abcd” it shows you what is
held in the memory at location “abcd”.

      - db [address] :            displays byte from address

      - dw [address] :          displays word from address

      - dl [address] :              displays long from address

      - il :            dissambles the codes. Used if you for example want to see what
happens after a branch code.

      - atb [a-trap name] :            MacsBug activates every time that a-trap is

being called.

      - atc :            clears a-traps

      - f address expr ‘string’ :            this is the find command. “address” reffers
to the starting point of the serch “expr” is how many bytes it should serch
and “ ’string” is what you’re looking for! Observe the semi quotation mark
before the string! You need to use that!

You can find out more about commands for MacsBug by typing “help”

Super ResEdit is used to a large extent to change the assembly commands
and resources in an application. More about it when we need to use it!

--==< Exploiting Dialogs >==--

          All right! Let’s get started! The first approach to cracking a program is
by exploiting the serial number dialog box. Usually when a software asks you
to enter a password or serial number, it puts up a dialog box. By dropping
into MacsBug you will be able to follow through the code, see what’s going
on, and change the code to fit your needs! The trick with droping into
MacsBug is to drop in at the right time. If you don’t then you’ll probably
spend hours following through thousands of commands only to find yourself
completely lost! So what is “the right time”? The right time is dropping into
MacsBug right when it starts the routine which checks the serial number.
With other words, dropping in at the series of commands, written by the
software author, that deal with the registration. So how do you do this? This
is when a-traps become important. You see, MacsBug has this function which
allows you to automaticly enter MacsBug. if an a-trap is about to be
executed. This is the: “atb [name of a-trap]” function. For example you can
type: atb getnewdialog followed by a return, and every time the processor is
about to run a “getnewdialog” a-trap you will automaticly be thrown into
MacsBug.

          Within the Mac OS there are a bunch of a-traps dealing with dialogs.   
For example a lot of times dialogs use the “ModalDialog” a-trap. So if you
want to drop into MacsBug whenever the “modaldialog” trap is called you
would drop into MacsBug and give it the following command: “atb
modaldialog” (without quotes). Whenever you’re done with a trap, I advise
you to give the command “atc” to MacsBug since this turns off the scan for
a-traps.
OK I feel lame so I’m gonna give you a list of all the a-traps dealing with
dialogs (to the best of my knowledge):

InitDialogs

ErrorSound
GetNewDialog
CloseDialog
DisposeDialog
CouldDialog
FreeDialog
ParamText
ModalDialog
IsDialogEvent
DialogSelect
DrawDialog
UpdateDialog
Alert
StopAlert
NoteAlert
CautionAlert
CouldAlert
FreeAlert
GetDialogItem
SetDialogItem
HideDialogItem
ShowDialogItem
SelDialogItemText
GetDialogItemText
SetDialogItemText
FindDialogItem
NewColorDialog

        The truth is that you don’t need to learn all of these, but it might come in
handy if you have a list of them all. (The a-traps dealing with alerts refer to
alert dialog boxes, ie. ones that only have an OK button on them).

--==< Using A-traps With Dialogs >==--

          First I will guide you through the cracking of a program that puts up a
registration dialog box and asks you to enter your registration name and
registration number.   

          The principle behind this is as follows: the program puts up the dialog
box, then it lets you enter the registration number (reg#) and your
registration name, then it takes your registration name and does a bunch of
calculations with it, compares the answere to the reg# you entered, and
depending on whether the reg# you entered was right or wrong a conditional
branch will occur. Remember what conditionals are? Instructions like: BGE,
BNE, BEQ (branch if greater or equal, branch if not equal, branch if equal).   

          So what we want to happen is to drop into MacsBug straight after
clicking on the OK button, and then trace through the instructions looking for
that conditional which decides wether the reg# we entered was right or
wrong. And once we found it we want to change it so that no matter what we
type as a reg# it will always say that the number we entered is correct!

          The most basic approach to this is through the “ModalDialog” a-trap.   
Modal dialogs are dialog boxes that are fixed on the screen and only
dissapear after you clicked one of the buttons. The only thing you have to
know about modal dialog boxes are that information is usually collected from
them after the user (cracker) presses the OK button and that the information
you typed into the text-fields of the dialog box will be pushed into the
memory with the “GetDialogItemText” a-trap!

--==< How to Crack (in theory) >==--

          So how would I set out to crack the program in real life? I would start off
by picking a unique number (that I can easily recognize) such as 123456789.
Then I would enter ANY name as the registration name. Then I would type
12345678 (without the nine) as the reg#. Then I would drop into MacsBug
and issue the modaldialog trap command (atb modaldialog). Then I would go
back to the application with the “g” command. Then I would type the number
nine. This should drop me into MacsBug again. The next command is the
trace (“t”) command, which drops me back into the application. Now I would
click on the OK button, and find myself in MacsBug. again. And presto, I’m in
the right place. After this it is just a matter of steping and tracing through the
code tyring to figure out where the conditional branch I want to change is!   

“OK, I think I found the conditional I was looking for...What do I do now?”
Easy! If the conditional does not branch but you want it to branch, type
“pc=address” where address represents the hex number under the place
where it says “Will branch” or “Will not branch”. This should have brought
you to a whole new place in the code. After giving the “g” command, the
“thank you for registering” dialog should appear if you changed the right
conditional! However, sometimes the code will branch when you don’t want
it to. So if you wanted to jump over the current instruction (since not giving
the pc a command is like jumping over a command) you would give MacsBug
the command “pc=pc+n”, where n is the length om the assembly
instruction. How do you determine n? In MacsBug in the right bottom corner
next to the assembly instructions are hexadecimal numbers. These numbers
are the equivilents to the assembly commands in hexadecimal form. This
way you can determine the commands leangth. Just count how many digits
the hex number next to the command is, divide it by two and you have the
value of n! So if the number is “AAFE” n would equal 2, and if the number is

“AABB 1234” then n would equal 4. Get it?

HINTS:
1.    The GetDialogItemText a-trap puts the things you entered in the dialog
box in address register one. So by checking the value in address register one
(give the command “dm a1”) you can decide where the program is collecting
the from the dialog, and where it started to mess around with the registration
number.

2. Some people would advise you not to stop for ModalDialog a-traps but to
do GetDialogItemText or GetDialogItem a-traps straight away. They would
argue that this would bring you further into the code. But I don’t like this
approach because the GetDialog commands are usually issued from within
subroutines of the main code which means that I have no idea of where in
the code I am.    But with the ModalDialog I always know that I’m at the
command after the dialog a-trap.

3. Stepping thorugh the code can become a bitch! I can storongly suggest
that you trace through the code at first! Meaning: jump over subroutines,
and check which one brings up the dialog saying that the number you
entered is invalid. Chances are that the conditional you’re looking for is in
that subroutine. So the next time, step through that subroutine and see what
the code does! And if that wasn’t the right subroutine go to the one before it!
This WILL save you a lot of time!
3.a) NEVER EVER step into an a-trap! You can reckognize a-traps because
they have an “_” sign infront of them.

4. Pay attention to what’s going on in the data and address registers! You are
following through the code to understand what the program does! If you try
the trial and error way, it will probably take you a hell of a long time! So issue
the “dm [addres]” command often!

So this was the theory, now let’s do the real thing!

--==< How to Crack (in real life) >==--

This code is take from a real program. But because of copyright issues I will
not name the program I took it from! I will just describe the different steps,
and what’s going on! First here is the full code from the ModalDialog trap
untill the conditional that I’m looking for:
          +0009A 00D2E6F6      _ModalDialog  ; 00293126      | A991
          +0009C 00D2E6F8      MOVE.L          -$0004(A6),-(A7)  | 2F2E FFFC
          +000A0 00D2E6FC      MOVE.W          -$0414(A6),-(A7)  | 3F2E FBEC
          +000A4 00D2E700      PEA                -$030A(A6)  | 486E FCF6
          +000A8 00D2E704      PEA                -$0008(A6)  | 486E FFF8

          +000AC 00D2E708      PEA                -$0312(A6)  | 486E FCEE
          +000B0 00D2E70C      _GetDialogItem  ; 00292E38      | A98D
          +000B2 00D2E70E      CMPI.W          #$0001,-$0414(A6)  | 0C6E 0001 FBEC
          +000B8 00D2E714      BNE                XXXXXXXXX+001AA                ; 00D2E806      | 6600 00F0
          +000BC 00D2E718      MOVEQ            #$01,D3  | 7601
          +000BE 00D2E71A      MOVE.L          -$0004(A6),-(A7)  | 2F2E FFFC
          +000C2 00D2E71E      MOVE.W          #$0006,-(A7)  | 3F3C 0006
          +000C6 00D2E722      PEA                -$030A(A6)  | 486E FCF6
          +000CA 00D2E726      PEA                -$0008(A6)  | 486E FFF8
          +000CE 00D2E72A      PEA                -$0312(A6)  | 486E FCEE
          +000D2 00D2E72E      _GetDialogItem  ; 00292E38      | A98D
          +000D4 00D2E730      MOVE.L          -$0008(A6),-(A7)  | 2F2E FFF8
          +000D8 00D2E734      PEA                -$0412(A6)  | 486E FBEE
          +000DC 00D2E738      _GetDialogItemText  ; 002929A4      | A990
          +000DE 00D2E73A      LEA                -$0412(A6),A0  | 41EE FBEE
          +000E2 00D2E73E      MOVE.L          A0,D3  | 2608
          +000E4 00D2E740      MOVEA.L        D3,A0  | 2043
          +000E6 00D2E742      MOVEQ            #$00,D0  | 7000
          +000E8 00D2E744      MOVE.B          (A0),D0  | 1010
          +000EA 00D2E746      ADDQ.L          #$1,D0  | 5280
          +000EC 00D2E748      MOVEA.L        D3,A0  | 2043
          +000EE 00D2E74A      LEA                -$0308(A6),A1  | 43EE FCF8
          +000F2 00D2E74E      _BlockMove  ; 401AD5D8      | A02E
          +000F4 00D2E750      MOVE.L          -$0004(A6),-(A7)  | 2F2E FFFC
          +000F8 00D2E754      MOVE.W          #$0008,-(A7)  | 3F3C 0008
          +000FC 00D2E758      PEA                -$030A(A6)  | 486E FCF6
          +00100 00D2E75C      PEA                -$0008(A6)  | 486E FFF8
          +00104 00D2E760      PEA                -$0312(A6)  | 486E FCEE
          +00108 00D2E764      _GetDialogItem  ; 00292E38      | A98D
          +0010A 00D2E766      MOVE.L          -$0008(A6),-(A7)  | 2F2E FFF8
          +0010E 00D2E76A      PEA                -$0412(A6)  | 486E FBEE
          +00112 00D2E76E      _GetDialogItemText  ; 002929A4      | A990
          +00114 00D2E770      LEA                -$0412(A6),A0  | 41EE FBEE
          +00118 00D2E774      MOVE.L          A0,D3  | 2608
          +0011A 00D2E776      MOVEA.L        D3,A0  | 2043
          +0011C 00D2E778      MOVEQ            #$00,D0  | 7000
          +0011E 00D2E77A      MOVE.B          (A0),D0  | 1010
          +00120 00D2E77C      ADDQ.L          #$1,D0  | 5280
          +00122 00D2E77E      MOVEA.L        D3,A0  | 2043
          +00124 00D2E780      LEA                -$0108(A6),A1  | 43EE FEF8
          +00128 00D2E784      _BlockMove  ; 401AD5D8      | A02E
          +0012A 00D2E786      SUBQ.W          #$2,A7  | 554F
          +0012C 00D2E788      PEA                -$0308(A6)  | 486E FCF8
          +00130 00D2E78C      PEA                -$0108(A6)  | 486E FEF8
          +00134 00D2E790      JSR                xxxxxxxxxxx  | 4EB9 00D2 CDD8
          +0013A 00D2E796      MOVE.B          (A7)+,D0  | 101F
          +0013C 00D2E798      BEQ.S            XXXXXXXXX+00142                ; 00D2E79E      | 6704

          Wow! Does that firghten you? Well it shouldn’t! If you follow the hints I
gave you, you should not even have to spend too much time finding the right
conditional. OK here’s a summary of the most important commands from the
above exert:
+ 000B0
GetDialogItem
+ 000B8
BNE

XXXXXXXX+001AA                            Will Not Branch

+ 000D2
GetDialogItem
+ 000DC
GetDialogItemText
+ 000F2
BlockMove
+ 00108
GetDialogItem
+ 00112
GetDialogItemText
+ 00128
BlockMove
+ 00134
JSR

XXXXXX
+ 0013C
BEQ

XXXXXXX+00142                            Will Branch

Ok, so notice the things that I selected to be important! These are the branch
commands and the GetDialog a-traps, and the subroutines! An important
part of cracking is to reckognize the things you are looking for! And the
things you don’t want to spend time on analyzing! Offcourse the first time
you’re cracking something you will most likely go through each and every
command. But as you get better and better you learn to spot the important
ones! In the summary the first GetDialogItem trap and the conditional that
follows it are unimportant! I reckognized this by branching onto the address
given. Since the program froze on me, that was not the conditional I was
looking for! The a-trap at offsett DC is the one that puts the name I put as
registration name into address register one and the BlockMove probably
stores my name somewhere in the memory. At this point I know that the
program is still just collecting the data from the dialog. The next couple of a-
traps store the number I entered as a reg# in the memory. At this point I
know that now the program has all the data it needs and will soon start
checking the reg# I entered. And as I expected soon after the BlockMove
there is a subroutine. From common sense I guessed that this subroutine is
where the program compares my reg# to the real one. So I trace over it. And
at 13C is a conditional. It will branch. So I let it branch and see what
happens. I find out that all the things I don’t want to happen, occur.
Therefore, I repeat the procedure and come back to this instruction again.
But this time I jump over the command. How do I do it? I give MacsBug the
command “pc=pc+2” since the hex value of the command is 6704, which is
four digits long. This jumps over the command. I issue the command “g”, and
voila: the “thank you or registering” dialog appears!

As another example, if the conditional above was not BEQ but BNQ, then the
program would not have branched. Let’s say that I wanted it to branch. How
do I do it? Easy I just give the command “pc=00D2E79E” since 00D2E79E is

the address that appeared under where it says “will not branch”.

--==< End of Part 1 >==--

        Well folks, that concludes the first part of this file! Do not think that
you’re actually done with cracking the program! But I felt like keeping you in
suspense so I will wait ‘till the next issue of HackAddict to let you know how
to actally change the code with ResEdit. In Part 2 of The Ultimate Mac
Cracking Guide I will also discribe several more ways of cracking programs
that can not be cracked with the ModalDialog trap method!

          Part 2 will hopefully be published in the next issue of HackAddict. So
until then you’ll have plenty of time for experimenting and getting
experienced!

- ProZaq

